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     Abstract 

Plastic deformation of metal parts has been a matter of concern for 
investigators in academia, industry and research institutions all over the world. 
Literature reveals that earlier researchers have applied efforts for predicting 
plastic deformations using mesh based approach. A truly meshless formulation 
for rigid plastic analysis of metal parts has been developed in the present study 
for both plane stress and plane strain cases. In the present formulation, the 
governing equations are obtained for different set of scattered nodes over the 
problem domain and the integral equation for rigid plastic behavior is obtained 
through weak form over a local sub-domain. The meshless solution functions 
are obtained for different set of scattered nodes through moving least square 
technique. Essential boundary conditions are enforced through Penalty 
approach. The rigid plastic constitutive relationships incorporate only small 
deformation. Material constitutive relationship include Von-Mises yield 
criterion with rate independent associative flow theory. The solution algorithm 
for rigid plastic analysis of metal parts using meshless approach is discussed in 
the present work. Numerical results have been computed through two test 
functions using both linear and quadratic basis function which shows that 
presented formulation is accurate and robust for carrying out the rigid plastic 
analysis of metal parts. 

1. Introduction 
Plastic deformation of metal parts has been a vital 

activity in the area of solid mechanics and has been carried 
out all over the world. Numerous techniques were used to 
find plastic deformation of metal parts and most popular 
technique is Finite Element Methods (FEM) till last decade. 
The meshless method possesses numerous merits over the 
FEM as stated by many researchers [1], [2], [3], [4], [5], [6], 
[7], [8], [9], [10]. Most of the pioneer’s working in the area 
of meshless methods criticize FEM which motivated the 
others researchers to alleviate the problems arising due to 
mesh. Continuous efforts of these researchers inspired 
others to use some good features of FEM and they started 
generating system equations over the nodes in spite of 
element/mesh. The major progress towards the development 
of meshless methods started after the introduction of 
Diffuse Element Method (DEM) as reported by Nayroles in 
1992 [11]. Later on, many meshless methods were reported 
in literature but the methods are called although meshless 
but they are not truly meshless. They somehow need mesh 
either for interpolation or for integration purpose. But due to 
the elimination of mesh requirement, the so called meshless 
methods became cheap and flexible. Their flexibility 
extends further if the methods become truly meshless. 
Messless Local Petrov Galerkin (MLPG) method, Local 
Boundary Integral Equation (LBIE) method, Point 
Weighted Least Squares (PWLS) methods are reported as 
truly meshless methods as they do not need any mesh either 
for interpolation or for integration purpose. 

In the last decade, truly meshless methods have been 
successfully implemented to solve numerous engineering 
and science problems as reported by Sladek [12]. M. H. 
Kagarnovin at el reported to implement element free  
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Galerkin method for elasto-plastic stress analysis around a 
crack tip [13]. Y. T. Gu implement the local meshless 
approach for solving elasto-plastic analysis of solid using 
total deformation theory [14]. Y. P. Chen et al implemented 
meshless approach for rate independent large strain 
plasticity problem under high speed impact and contact 
situation [15]. Jianfeng Ma at el applied Meshless integral 
approach to solve elastoplastic small deformation problem 
[16]. But in literature, the perfect plastic analysis through 
truly meshless method were not found addressed and the 
aim of the present work is to explore the implementation of 
truly Meshless method for carrying out perfect plastic 
analysis of metal parts. In this regard a relationship between 
the nodes over the domain and value of field variable is 
required to be built for which moving least square technique 
is used. And the moving least square scheme can be 
referred/ presented as under. 

2. The Moving Least Square Approximation 
(MLS)                     
In meshless methods the algebraic system equations 

are established without predefining the mesh over the whole 
problem domain. In this meshless method nodes are spotted 
over the whole problem domain and boundary and at these 
points the value of the field variable is required to be 
calculated. A relationship between the spotted nodes over 
the domain and boundary and value of field variable is 
required to be built. Some technique is needed that can 
approximate the value of field variable at these spotted 
nodes. There are a number of techniques available in 
literature viz. Shepard function after Donald Shepard in 
1968 [17], in 1981 Peter Lancaster and K. Salkaushas [18] 
generalize the Shepard function and introduced Moving 
Least Squares Method, in 1997 Babuska and Melenk 
reported Partition of Unity Method [19], Liu, Chang in 1996 
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presented Reproducing Kernel particle method [20], in 1995 
Robert Schaback introduced Compactly Supported Radial 
Basis Function [21] and some other methods that establish 
the relationship are also available in literature. Some of the 
interpolation techniques are compared by K.Y. Lam at el 
22]. In order to make the current meshless formulation 
general, the approximation scheme ought to have high 
computational accuracy, low computational cost, 
computationally easy to implement and extend to 
multidimensional problems [23, 24]. The moving least 
squares (MLS) approximation may be one of such schemes 
that fulfill above requirements. Hence MLS approximation 
is used in the current implementation and it can be referred 
from [18], [3], [2]. 

3. Meshless for Mulation and Solution for 
Perfect Plastic Analysis of Metal Parts 

The perfect plastic analysis of metal parts having 
continuous domain Ω and bounded by boundary Γ, can be 
performed using the following equilibrium equation  
σ , + b =0          (1) 

Here σ  represents stress tensor, σ ,  represents the 
partial derivative of stress tensor w.r.t. space coordinate, 
and b  represents body force acting on the deforming 
domain Ω. The metal part problem domain is subjected to 
Dirichlet boundary conditions for the a  node lying on the 
boundary Γ   is  u =  u . The Neumann conditions 
comprises of σ 풩  = t ̅  for the a  node lying on Γ  
boundary portion of Γ boundary. For specifying the natural 
boundary condition, 풩  represents the components of the 
local outward normal vector calculated for an arbitrary a  
node that lies on the  Γ  boundary. The local weak form of 
the equilibrium equation in present investigation, i.e. 
applicable to a small local domain bounded in the vicinity 
of  a  node, can therefore be written as 
∫ vΩ σ , + b dΩ− α∫ vΓ (u − u )dΓ =  0    (2) 

Where, Ω  represents quadrature sub-domain of 
a  node. This sub-domain can have arbitrary number of 
nodes, v  is a test function for a  node and it can 
theoretically be any function. And α is the penalty 
parameter used to enforce dirichlet boundary conditions as 
the shape function obtained through MLS approximation 
method do not satisfy Kronecker delta property. Here,   Γ  
represent the portion of the global boundary Γ where 
displacement boundary conditions are specified for a  
node. In order to obtain the weak form of Eq. (2), 
integration by parts i.e. Green’s theorem is used so as to 
shift the order of differentiation from stress term to test 
function and using Divergence theorem, the volume integral 
is converted into surface integral. The weak form of the 
equilibrium equation for a  node can be expressed as 
∫ σ 풩 vΓ dΓ− ∫ σ v ,Ω dΩ + ∫ b v ,Ω dΩ−

α∫ vΓ (u − u )dΓ = 0                           (3) 
 

Here Γ  represents quadrature/local sub-domain 
boundary of a   node, v ,  represents the space derivative of 

the test function defined for a  node. And  풩  is the j  
component of the unit outward normal vector for a  node 
having the boundary Γ . The term σ  풩  is known as 
traction vector at a  point on the surface Γ  offered due to 
t ̅  real force that acts on the surface  Γ  . The boundary Γ  
of the local quadrature domain Ω  is now composed 
of  Γ ,   Γ  & Γ .  

Where Γ   represents the boundary of local quadrature 
domain where the traction force is acting on boundary 
portion Γ  of a  node. Γ   represent the boundary portion 
Γ  of local quadrature domain where the displacement 
boundary conditions are specified for a  node. Γ   
represents the boundary of local quadrature domain which 
does not intersect with the global boundaries Γ  i.e. the 
internal boundary of local quadrature domain. 

The local weak form of the equilibrium equation can 
therefore now be rewritten for a local quadrature domain of 
node a which is located within global domain Ω and on 
global boundaries Γ    i.e.  
Γ = Γ ∪ Γ  ∪ Γ           (4) 
On substituting Eq. (4) in Eq. (3) i.e. 
∫ σ 풩

 
vΓ dΓ + ∫ vΓ σ 풩 dΓ− ∫ vΓ σ 풩 dΓ−

∫ (v , σ − v b )Ω dΩ− α∫ vΓ (u − u )dΓ = 0    (5) 
Eq. (5) has become now valid for those nodes, over 

which some traction force is acting on some portion of 
global boundary and some displacement boundary 
conditions are specified on some portion of the global 
boundary. Eq. (5) therefore further reduces to Eq. (6) which 
is valid for all nodes whose local boundaries do not intersect 
with global boundaries in which integral term with internal 
quadrature boundary Γ  becomes zero because v  test 
function is chosen in such a way that its value is zero at the 
boundary. 
∫ (σ − b )v ,Ω dΩ = 0   (6) 

It is worthwhile to mention here that in the present 
formulation the integration is carried out over local 
quadrature sub-domains and if the whole problem domain is 
not covered then this formulation can generate numerical 
errors. In order to reduce such numerical errors, more 
accurate discretization of the problem is therefore required 
and due to this, the overlapping of sub-domains is allowed. 
The local weak form of equilibrium equation as given by 
Eq. (5) and (6) are valid for continuous local sub-domain 
space of a  node. This way the continuous problem space 
is discretized into a finite N number of nodes. The 
discretized problem domain for the continuous problem 
space can now be written as a set of nonlinear equations that 
represents the whole problem domain.  
[K]{U} = {F}           (7) 

Here [K] is known as assembled stiffness matrix, {U}  
is known as global displacement field vector and {F} is 
known as global force vector. For solving this nonlinear eq. 
(7), the incremental iterative procedure with radial return 
method is used. For each iteration of loading step, the 
equilibrium is now checked whether the internal load vector 

is approximately equal to external applied load vector 
so that iteration process can be terminated. Here in the 
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present work for economy modified Newton Raphson 
scheme is applied. The next step is to write various 
quantities on to the disc for post processing purpose. 

In the above set of nonlinear equations, the 
contribution of a particular a  field node within the 
deforming space can therefore be represented as 
[k ] u  = {f }     (8) 

Where k  represents a  nodal contribution to Global 
stiffness matrix and {f } represents the nodal force 
contribution to global force vector. This contribution 
includes the body forces applied at the problem domain of 
a   node, traction force applied on boundary and penalty 

force term. Here u  term represents the displacements 
caused in the adjacent b   nodes when force is applied at 
a  node and adjacent b   nodes lie within the influence 
domain of a  node.  It is also to be noted here that the 
adjacent b   nodes are variables and they vary from node 
number 1 to n. Where n, is total number of nodes within 
influence domain of a  node. The term k ,  represents 
stiffness contribution of a particular a  node to one of the 
specific adjacent  b   node within influence domain of 
a   node. 
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For the particular ath node that lies on or nearer to the boundary of global domain, the above local weak form of 
equilibrium equation after separating the known and unknown variables can now be written in discretized form as 
above 

{fi
a}2×1 = ∫ va 0

0 va
2×2

tx̅
a

ty̅
a

2×1

dΓ + α∫ va 0
0 va

2×2

ux
a

uy
a

2×1
dΓ + ∫ va 0

0 va
2×2

bx
a

by
a

2×1
dΩ Ωq

aΓqu
aΓqt

a       (10) 

Where adjacent bth node is varying from 1 to n. Here n 
is total number of nodes within the influence domain of 
ath node and Dp  is perfect plastic material constitutive 
matrix in Eq. (9). Here [ a] in Eq. (9) represents the unit 
outward normal matrix for ath field node that lies on the 
boundary  Γqu

a . The unit outward normal matrix  

[ a] = x
a 0 y

a

0 y
a

x
a      (11) 

Where  x
a  & y

a represents the normal vector 
components along x and y direction respectively at ath node 
point that lies on the boundary Γqu

a . Similarly above 
equations can therefore be obtained for ath field node that lie 

entirely within global domain and their local quadrature 
domain do not intersect with global boundary. 

4. Rigid Plastic Constitutive Relation 
In Eq. (9), the [Dp] matrix is required for solution and 

this matrix represents perfect plastic constitutive relation. 
According to incremental flow theory the perfect-plastic 
constitutive relation requires three conditions for 
establishing correct stress – strain relationship. They are 
flow rule, yield condition, loading and unloading condition. 

According to incremental flow theory for small 
deformation analysis of metal the total strain increment 
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d{ϵt} can be next decomposed into two parts. Those are 
elastic strain {dϵe} and plastic strain {dϵp} in vector form. 
{dϵt} = {dϵe} + {dϵp}     (12) 

The incremental stress strain relation can be further 
written as in matrix form as 
{dσ} =  Dep {dϵt}         (13a) 
{dσ}   = [D]({dϵt}− dϵp )      (13b) 

Eq. 13b is valid for [D] elastic deformation but for this 
evaluation plastic strain is required to be known and it must 
be a function of material. The incremental plastic strain 
magnitude and direction can be related to current stress state 
through flow rule.  
dϵp = dλ F

{σ}
 = dλ{a}        (14) 

In Eq. (14) F is yield function and this modeling theory 
is popularly known as Associated Theory of Plasticity. 

Now applying the yield criterion to decide whether the 
material has yielded or not.  The material’s behavior which 
is idealized as elastic-perfectly plastic material is presented 
in Eq. (15) 
F = f(σ) = k2     (15) 

On applying Von Mises yield criterion, the Eq. (15) 
can now be rewritten as 
f = 0.5 SijSij − k2 = 0.5 SijSij −

1
3

σe
2 = 0 (15b) 

Here f represents yield function, Sij is deviatoric 
components of stresses, σe is effective stress and is assumed 
here equal to yi  for perfect plastic case H = 0 i.e. (σe =
yi + Hεp). where H is hardening modulus and εp is effective 
plastic strain. It is important to note here that f is fixed as no 
hardening is considered. 

Now before substituting Eq. (15) into Eq. (14), it is 
to be checked whether state of stress lies on the yield 
surface. Such conditions are guaranteed by consistency 
conditions. These consistency conditions can be 
summarized as under and are sometimes referred as Kuhn-
Tucker conditions 
dλ ≥ 0,       F ≤ 0,    dλF = 0         (16) 

The first condition in Eq. (16) states that plastic 
multiplier scalar cannot be negative; the second condition 
signifies that the state of stress at any point within the 
specimen can lie on or within the yield surface. The last 
condition states that during plastic deformation the state of 
stress always lies on the yield surface.  

From Kuhn- Tucker 3rd condition that during plastic 
deformation when specimen is loaded or unloaded, a change 
in yield function occurs and it can mathematically be 
represented as 
dλdF = 0 if F = 0     (17) 

Once the plastic deformation occurs then it is 
irrecoverable hence dλ cannot be equal to zero so dF must 
be equal to zero.  
dF

d{σ} d{σ} = 0              (18) 
Substituting Eq. (13b) and Eq. (14) into Eq. (18) it will lead 
to Eq. (19) 
{a}T[D] {dϵt}− dϵp = 0             (19) 
Now replacing dϵp  as in Eq. (19) with Eq. (14)  
{a}T[D]({dϵt}− dλ{a}) = 0       (20) 
Here dλ = {a}T[D]{dϵt}

{a}T[D]{a}      (21) 

Now substituting Eq. (21) into Eq. (14) the magnitude 
of plastic strain components, can now be evaluated by Eq. 
(22) 
dϵp = dλ F

{σ}
 = dλ{a} = {a}T[D]{dϵt}

{a}T[D]{a}
{a}  (22) 

Now substituting Eq. (22) into Eq. (13b) 

{dσ}   = [D] {dϵt}−
{a}T[D]{dϵt}
{a}T[D]{a}

{a}       (23) 

On taking {dϵt} as common factor, then Eq. (23) leads 
to Eq. (24) 

{dσ}   = {dϵt} [D]− [D] {a}T[D]
{a}T[D]{a}

{a}       (24) 

Now on comparing Eq. (24) to Eq. (13b), the term 
within square bracket should represent Dp  matrix. So the 
term within square bracket represents elasto-plastic 
constitutive relation for perfect plastic materials. 

 Dp = [D] − [D] {a}T[D]
{a}T[D]{a}

{a}   (25) 

 
Note that Eq. (25) contains plastic multiplier and flow 
vector, however dλ is also a function of flow vector which 
makes Eq. (25) nonlinear and it incorporates only material 
nonlinear behavior which has been validated as under. 

5. Validation of Rigid Plastic Meshless 
Formulation: Results and Discussion 
Two case studies namely thick cylindrical pressure 

vessel subjected to internal pressure and an infinite plate 
with a circular hole  subjected to continuously increasing 
traction along Y axis are presented for validation of above 
Meshless formulation. 
5.1. Case study of thick cylinder subjected to 

Continuously Increasing Pressure 
The problem domain of long thick cylinder is 

discretized into 861 nodes with regular nodal distribution of 
21x41 with . ° along theta direction and 0.25 units 
spacing in radial direction. The discretized geometry of 
thick cylinder subjected to continuously increasing pressure 
is presented through Figure. 1. 

Owing to symmetry in geometry and loading 
conditions only upper right segment of cylinder is modeled. 
The problem domain is modeled as plane strain. The 
internal radius of the cylinder is 5m and outer radius of the 
cylinder is 10m. The material of the cylinder has young’s 
modulus of 210.8 GPa, Poisson’s ratio of 0.3, yield strength 
of 0.2002 GPa and zero hardening modulus. The imposed 
boundary conditions for the quarter segment of thick 
cylinder comprises of displacement along X direction is 
restricted for the left face while this face is free to move 
along Y direction;  the bottom face is restricted to move 
along Y direction and it has no restriction to move along X 
direction. The traction boundary conditions are specified on 
inner radius and no traction is specified on the outer radius 
of the cylinder. The problem is solved using Gaussian Test 
Function (GTF) both for linear basis function (LBF) and 
quadratic basis function (QBF). During testing, the internal 
pressure of the cylinder is increased from 0 to 131.875 MPa 
in 5 load steps and the load steps are kept same as applied 
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by Abaqus student version software. The initial yielding is observed at 115 MPa loading. 

Fig: 1. Discretized geometry, loading and boundary conditions of cylinder
The comparison of Min. Principal Stress using Gaussian test 
function along Y=0 are represented through Fig.2a are with 
LBF and Fig.2b are with QBF. The comparison of Von 
Misses stresses distribution along Y=0 are represented 

through Fig.3a are with LBF and Fig.3b are with QBF. The 
spread of plastic zone as obtained from above presented 
formulation for different loading is presented for Gaussian 
Test Function are with LBF Fig.4a and Fig.4b is with QBF. 

 
 
 

 
 

 
Fig: 2a. Comparison of min. principal stress using GTF with LBF at 131.875MPa internal pressure 
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Fig: 2b. Comparison of min. principal stress using GTF with QBF at 131.875MPa internal pressure 

 
 

 
Fig: 3a. Comparison of Von Mises stress using GTF with LBF at 131.875MPa internal pressure 

 
Fig: 3b. Comparison of Von Mises stress using GTF with QBF at 131.875MPa internal pressure 
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Fig: 4a. Spreading of plastic strain using GTF with LBF at 131.875MPa internal pressure 

 
Fig: 4b. Spreading of plastic strain using GTF with QBF at 131.875MPa internal pressure 

The undeformed and deformed shape is compared for 
131.875 MPa internal pressure and are represented through 
Fig.5a with LBF and Fig.5b with QBF. In these figures the 
dot represents undeformed geometry; diamond represents 

deformed geometry obtained through meshless formulation 
while triangle represents deformed geometry obtained 
through FEM based Abaqus student version software.
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Fig: 5a. Comparison of Deformed meshless model using GTF and LBF at 131.875MPa internal pressure 

 
Fig: 5b. Comparison of Deformed meshless model using GTF and QBF at 131.875MPa internal pressure 

It can be observed from the above presented results 
that meshless computational results are in good agreement 

when compared the results obtained through FEM based 
Abaqus student version software. 
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5.2. Case study of infinite plate with central 
circular hole subjected to continuously 
increasing traction along Y axis 
An infinite plate with a central circular hole subjected 

to normal traction along top and bottom is considered here 
for validating the presented formulation. Owing to 
symmetry in geometry and loading condition, only right 
upper quadrant is considered here as shown in Fig. 6. The 
plate is 50 m long and 50 m wide with 5m radius of hole. 
The quarter plate model is discretized with 863 nodes 
through Abaqus student version software and the same 
nodal data is used for validating current meshless 
formulation. 

The boundary conditions enforced over the quarter 
segment is presented in Fig.6. The Dirichlet boundary 
conditions are enforced over the left face and bottom face of 
the quarter segment. The left face is restrained along X 
direction while bottom face is restrained along Y direction. 
The left face is free to move along Y direction while the 
bottom face is free to move along X direction. The 
Neumann boundary condition is applied on the top face of 

quarter section along Y direction. The right face is a free 
boundary. The material properties of the test plate having 
young’s modulus of 210.83 GPa, Poisson’s ratio of 0.3, 
yield strength of 0.2002 GPa and hardening modulus is 0 
GPa. During the testing the uniform normal traction along Y 
axis is increased from 0 to 154.375 MPa in 7 load steps. The 
load steps are same as applied by Abaqus student version 
software. This problem is solved for Spline Test Function 
(STF) both with linear basis function and quadratic basis 
function. The variation of Von-Mises stress along Y=0 is 
computed and compared with Abaqus student software. The 
results are presented through Fig. 7a for LBF and in Fig.7b 
for QBF for 126.25Mpa traction along y axis. The deformed 
and undeformed shape is also presented in Fig.8a for LBF 
and in Fig.8b for QBF. The undeformed geometry is 
represented by circle and deformed geometry through FEM 
is represented by diamond whereas, the deformed geometry 
using the presented formulation is represented through 
triangle. The load steps are same as obtained through 
Abaqus student version software. And the first yielding 
behavior is observed at 70 MPa. 

 
Fig: 6. Discretization, boundary conditions and loading along Y axis 

 
Fig: 7a. Comparison of Von Mises stress using STF with LBF at 126.25Mpa traction along Y direction 
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Fig: 7b. Comparison of Von Mises stress using STF with QBF at 126.25Mpa traction along Y direction 

 
Fig: 8a. Comparison of deformed meshless model using STF with LBF at 137.5MPa traction along Y direction 

 
Fig: 8b. Comparison of deformed meshless model STF with QBF at 137.5MPa traction along Y direction 

 
Fig: 9a. Spreading of plastic strain using STF with LBF at 154.375MPa traction along Y direction 
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The effective plastic strain spread zone as obtained 
from above formulation using spline test function with LBF 
and QBF are represented in Fig. 9a and Fig. 9b respectively 
for 154.375 MPa.  The variation of  along Y=0 using 
spline test function is presented in Fig.10a for LBF and 
Fig.10b for QBF respectively corresponding to 6th load step 
which is 137.5 MPa. 

Here it is quite lucid from Fig.7a and Fig.7b  for Von 
Mises stress along Y=0 and from Fig.8a and Fig.8b that for 

deformed and undeformed shape, the results obtained from 
above formulation are in close agreement with the result 
obtained from FEM based Abaqus student version. The 
results in Fig.10a and Fig.10b represents  along Y=0 
and a slight deviation is observed near the hole with LBF. 
The deviation is reduced to a much greater extent using 
QBF. The computed results can be still improved by using 
suitable sub-domain and support domain sizes. 

 
Fig: 9b. Spreading of plastic strain using STF with QBF at 154.375MPa traction along Y direction 

 
Fig: 10a. Comparison of  σ_YY using STF with LBF at 137.5MPa traction along Y direction 

 
Fig: 10b. Comparison of σ_YY using STF with QBF at 137.5MPa traction along Y direction 

6. Conclusion 
In this paper a true meshless approach is implemented 

for rigid plastic analysis of metal parts for plane stress and 
plane strain cases. In the present work, the governing 
equation are obtained for different set of sprinkled nodes 
over the problem domain and the integral equation are 
obtained through weak form of rigid plastic behavior over a 
local sub-domain. The meshless solution functions for 
different set of sprinkled nodes are obtained through 
moving least square technique. The essential boundary 
conditions are enforced through Penalty approach whereas 
no special attention is required to cater natural boundary 
conditions as they are automatically handled in the 

formulation.  The constitutive relation implemented above 
incorporates only small deformation. The material 
constitutive relations are based upon rate independent flow 
theory with Von-Mises yielding condition. The nonlinear 
governing equations are solved using incremental iterative 
approach with modified Newton Rapsons technique because 
generating new stiffness matrix in each iteration is a costly 
affair. The numerical example case studies show that the 
above presented formulation is accurate and robust for 
modeling rigid plastic behavior of metal parts if suitable 
support and sub-domain sizes are chosen. It is further 
expected that MLPG method will soon replace FEM or 
BEM due to its high speed to convergence, good accuracy, 
and robustness 
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